The tripartite Ramsey number for trees

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The tripartite Ramsey number for trees

We prove that for every ε > 0 there are α > 0 and n0 ∈ N such that for all n ≥ n0 the following holds. For any two-colouring of the edges of Kn,n,n one colour contains copies of all trees T of order k ≤ (3− ε)n/2 and with maximum degree ∆(T ) ≤ n. This answers a conjecture of Schelp.

متن کامل

Directed Ramsey number for trees

In this paper, we study Ramsey-type problems for directed graphs. We first consider the k-colour oriented Ramsey number of H, denoted by − →r (H, k), which is the least n for which every k-edgecoloured tournament on n vertices contains a monochromatic copy of H. We prove that − →r (T, k) ≤ ck|T |k for any oriented tree T . This is a generalisation of a similar result for directed paths by Chvát...

متن کامل

The size-Ramsey number of trees

Given a graph G, the size-Ramsey number r̂(G) is the minimum number m for which there exists a graph F on m edges such that any two-coloring of the edges of F admits a monochromatic copy of G. In 1983, J. Beck introduced an invariant β(·) for trees and showed that r̂(T ) = Ω(β(T )). Moreover he conjectured that r̂(T ) = Θ(β(T )). We settle this conjecture by providing a family of graphs and an emb...

متن کامل

The Size-Ramsey Number of Trees

If G and H are graphs, let us write G → (H)2 if G contains a monochromatic copy ofH in any 2-colouring of the edges of G. The size-Ramsey number re(H) of a graph H is the smallest possible number of edges a graph G may have if G→ (H)2. Suppose T is a tree of order |T | ≥ 2, and let t0, t1 be the cardinalities of the vertex classes of T as a bipartite graph, and let ∆(T ) be the maximal degree o...

متن کامل

Tripartite Ramsey numbers for paths

In this article, we study the tripartite Ramsey numbers of paths. We show that in any two-coloring of the edges of the complete tripartite graph K(n, n, n) there is a monochromatic path of length (1− o(1))2n. Since R(P2n+1,P2n+1) = 3n, this means that the length of the longest monochromatic path is about the same when two-colorings of K3n and K(n, n, n) are considered. © 2007 Wiley Periodicals,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Notes in Discrete Mathematics

سال: 2009

ISSN: 1571-0653

DOI: 10.1016/j.endm.2009.07.101